CLIFFORD-WEIL GROUPS OF QUOTIENT REPRESENTATIONS.

Annika Günther
Lehrstuhl D für Mathematik,
RWTH Aachen University
52056 Aachen, Germany
annika.guenther@math.rwth-aachen.de

Gabriele Nebe
Lehrstuhl D für Mathematik,
RWTH Aachen University
52056 Aachen, Germany
nebe@math.rwth-aachen.de

Eric M. Rains
Department of Mathematics,
California Institute of Technology,
Pasadena, CA 91125, U.S.A.,
rains@caltech.edu

Abstract. This note gives an explicit proof that the scalar subgroup of the Clifford-Weil group remains unchanged when passing to the quotient representation filling a gap in [3]. For other current and future errata to [3] see http://www.research.att.com/~njas/doc/cliff2.html/.

1. Introduction

All notations in this paper are introduced in detail in [3] and we refer to this book for their definitions. One main goal of the book is to introduce a unified language to describe the Type of self-dual codes combining the different notions of self-duality and Types, that are well established in coding theory. The Type of a code is a finite representation \(\rho = (V, \rho_M, \rho_\Phi, \beta) \) of a finite ring \(R = (R, M, \psi, \Phi) \). The finite alphabet \(V \) is a left module for the ring \(R \) and the biadditive form \(\beta : V \times V \to \mathbb{Q}/\mathbb{Z} \) defines the notion of duality. A code \(C \) of length \(N \) is then an \(R \)-submodule of \(V^N \) and the dual code is

\[
C^\perp = \{ v \in V^N \mid \sum_{i=1}^{N} \beta(v_i, c_i) = 0 \ \forall c \in C \}.
\]
Additional properties of codes of a given Type are encoded in the R-module $\rho_\Phi(\Phi)$ which is a certain subgroup of the group of quadratic mappings $V \to \mathbb{Q}/\mathbb{Z}$. A code $C \leq V^N$ is isotropic, if $C \leq C^\perp$ and

$$\sum_{i=1}^N \rho_\Phi(\phi)(c_i) = 0 \text{ for all } \phi \in \Phi \text{ and for all } c \in C.$$

Given a finite representation ρ, one associates a finite subgroup $\mathcal{C}(\rho)$ of $\text{GL}(C[V])$, called the associated Clifford-Weil group (see Section 2). For certain finite form rings (including direct products of matrix rings over finite Galois rings) it is shown in [3, Theorem 5.5.7] that the ring of polynomial invariants of ρ is called the associated Clifford-Weil group (see Section 2). For certain finite form rings (including direct products of matrix rings over finite Galois rings) it is shown in [3, Theorem 5.5.7] that the ring of polynomial invariants of $\mathcal{C}(\rho)$ is spanned by the complete weight-enumerators of self-dual isotropic codes of Type ρ. We conjecture that this theorem holds for arbitrary finite form rings. It is shown in [3, Theorem 5.4.13, 5.5.3] that in general the order of the scalar subgroup

$$\mathcal{S}(\mathcal{C}(\rho)) = \mathcal{C}(\rho) \cap \mathbb{C}^* \text{id}_{C[V]}$$

is exactly the greatest common divisor of the lengths of self-dual isotropic codes of Type ρ. The proof of this theorem uses the fact that the scalar subgroup of $\mathcal{C}(\rho)$ remains unchanged when passing to the quotient representation. The aim of the present note is to give a full proof of this statement, Theorem 1.

Throughout the note we fix an isotropic code $C \leq C^\perp \leq V$ in ρ. Then the quotient representation ρ/C is defined by

$$\rho/C := (C^\perp/C, \rho_M/C, \rho_\Phi/C, \beta/C),$$

where $(\rho_M/C(m))(v + C, w + C) = \rho_M(m)(v, w)$, $(\rho_\Phi/C(\phi))(v + C) = \rho_\Phi(\phi)(v)$, and $\beta/C(v + C, w + C) = \beta(v, w)$ for all $v, w \in C^\perp$, $m \in M$, $\phi \in \Phi$.

Theorem 1. Let $\mathcal{R} = (R, M, \psi, \Phi)$ be a finite form-ring and let $\rho = (V, \rho_M, \rho_\Phi, \beta)$ be a finite representation of \mathcal{R}. Let C be an isotropic self-orthogonal code in ρ. Then

$$\mathcal{S}(\mathcal{C}(\rho)) \cong \mathcal{S}(\mathcal{C}(\rho/C)).$$

2. Clifford-Weil Groups and Hyperbolic Counitary Groups

The Clifford-Weil group $\mathcal{C}(\rho)$ associated to the finite representation ρ acts linearly on the space $C[V]$ with basis $\{b_v : v \in V\}$. It is generated by

- $m_r : b_v \mapsto b_{rv}$ for $r \in R^*$
- $d_\phi : b_v \mapsto \exp(2\pi i \phi(\psi(v)))b_v$ for $\phi \in \Phi$
- $h_w : b_v \mapsto \frac{1}{\text{id}_{C[V]} - e^2} \sum_{w \in v} \exp(2\pi i \beta(w, v_\psi))b_{w+(1-e)v}$ for $e^2 = e \in R$ symmetric.

Recall that the form-ring structure defines an involution J on R. Then an idempotent $e \in R$ is called symmetric, if eR and eJ are isomorphic as right R-modules, which means that there are $u_e \in eRe^J$, $v_e \in e^JRe$ such that $e = u_e v_e$ and $eJ = v_e u_e$.

The Clifford-Weil group $\mathcal{C}(\rho)$ is a projective representation of the hyperbolic counitary group

$$\mathcal{U}(R, \Phi) = U\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \text{Mat}_2(R, \Phi_2).$$

The elements of $\mathcal{U}(R, \Phi)$ are of the form

(1)

$$X = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right), \left(\begin{array}{cc} \phi_1 & m \\ \phi_2 & \phi_2 \end{array}\right) \in \text{Mat}_2(R) \times \Phi_2$$

...
such that
\[
\begin{pmatrix}
\gamma^J \alpha & \gamma^J \beta \\
\delta^J \alpha & \delta^J \beta
\end{pmatrix} = \psi_2^{-1} \begin{pmatrix}
\lambda(\phi_1) & m \\
\tau(m) & \lambda(\phi_2)
\end{pmatrix}.
\]
A more detailed definition of \(\mathcal{U}(R, \Phi)\) can be found in [3, Chapter 5.2].

It is shown in the book that \(\mathcal{U}(R, \Phi)\) is generated by the elements
\[
d((r, \phi)) = \begin{pmatrix}
r^{-J} & r^{-J} \psi^{-1}(\lambda(\phi)) \\
0 & r
\end{pmatrix},
\]
with \(r \in \mathbb{R}^*, \phi \in \Phi\) and
\[
H_{e,v} = \begin{pmatrix}
1 - e^J u_e & v_e \\
-e^{-1} u_e & 1 - e
\end{pmatrix} \begin{pmatrix}
0 & \psi(-\epsilon e) \\
0 & 0
\end{pmatrix},
\]
where \(e = u_v v_e\) runs through the symmetric idempotents of \(R\).

To formalize the proofs we let \(F(R, \Phi)\) denote the free group on
\[
\{d(r, \phi), H_{e,v} | r \in \mathbb{R}^*, \phi \in \Phi, e = u_v v_e\text{ symmetric idempotent in } R\}.
\]

On these generators there are two group epimorphism:
\[
\pi : F(R, \Phi) \rightarrow \mathcal{U}(R, \Phi), d(r, \phi) \mapsto d((r, \phi)), H_{e,v} \mapsto H_{e,v}
\]
and
\[
(2) \quad p : F(R, \Phi) \rightarrow C(\rho); \quad d(r, \phi) \mapsto m, d_\phi, \quad H_{e,v} \mapsto h_{e,v}.
\]

Theorem 2. \(p(\ker(\pi)) \subseteq \mathcal{S}(C(\rho))\).

If \(\rho\) is faithful (i.e. \(\text{Ann}_R(V) = 0 = \ker(\rho)\)), then \(p(\ker(\pi)) = \mathcal{S}(C(\rho))\).

This is essentially [3, Theorem 5.3.2]. However the calculations there were omitted so we take the opportunity to give them here for completeness (also since there are a few typos in the proof there). As in [3, Theorem 5.3.2] we define the associated Heisenberg group \(\mathcal{E}(V) := V \times V \times \mathbb{Q}/\mathbb{Z}\) with multiplication
\[
(z, x, q) \cdot (z', x', q') = (z + z', x + x', q + q' + \beta(x', z)).
\]

Then \(\mathcal{E}(V)\) acts linearly on \(\mathbb{C}[V]\) by
\[
(z, x, q) \cdot v = \exp(2\pi i (q + \beta(v, z)))b_{v + z}, \quad (z, x, q) \in \mathcal{E}(V), \ v \in V.
\]

This yields an absolutely irreducible faithful representation \(\Delta : \mathcal{E}(V) \rightarrow GL(V)(\mathbb{C})\).

Lemma 3. The hyperbolic counitary group \(\mathcal{U}(R, \Phi)\) acts as group automorphisms on \(\mathcal{E}(V)\) via
\[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix} \begin{pmatrix}
\phi_1 & m \\
\phi_2 & \phi_2
\end{pmatrix} = (\alpha z + \beta x, \gamma z + \delta x, q + \rho(\phi_1)(z) + \rho(\phi_2)(x) + \rho_M(m)(z, x)).
\]

If \(\rho\) is a faithful representation, then this action is faithful.

Also the associated Clifford-Weil group \(C(\rho) \leq GL(\mathbb{C}[V])\) acts on \(\Delta(\mathcal{E}(V)) \cong \mathcal{E}(V)\) by conjugation.

Lemma 4. For \(r \in \mathbb{R}^*, \phi \in \Phi\) and \((z, x, q) \in \mathcal{E}(V)\) we have
\[
\Delta(d((r, \phi))(z, x, q)) = (m, d_\phi) \Delta((z, x, q))(m, d_\phi)^{-1}.
\]
Proof. The proof is an easy calculation.

d((r, ϕ))(z, x, q) = (r^{-1} z + r^{-1} ψ^{-1} ϕ(x)) x + q + ρ_Φ(x)

maps the basis element \(b_v \) \((v \in V) \) to

\[
\exp(2\pi i q + ρ_Φ(x) + ρ_M(\lambda(ϕ))(r^{-1} v, x)) b_v + x
\]

On the other hand

\[
(m_r d_Φ)Δ((z, x, q))(m_r d_Φ)^{-1}(b_v) = \\
= m_r d_Φ \exp(2\pi i q - ρ_Φ(ϕ)(r^{-1} v)) (b_v - v + x)
\]

\[
= \exp(2\pi i q - ρ_Φ(ϕ)(r^{-1} v)) (b_v - v + x)
\]

which is the same as the above, since \(β(r^{-1} v, x) = β(v, r^{-1} z) \) by definition of the involution \(J \) and

\[
ρ_M(ϕ)(r^{-1} v, x) = β(r^{-1} v, ψ^{-1} ϕ(x)) = β(v, r^{-1} ψ^{-1} ϕ(x)).
\]

□

Lemma 5. For \(e = u_e v_e \) a symmetric idempotent in \(R \) and \((z, x, q) ∈ E(V) \)

\[
Δ(H_{e, u_e, v_e}(z, x, q)) = h_{e, u_e, v_e} Δ((z, x, q)) h_{e, u_e, v_e}^{-1}.
\]

Proof. The group \(E(V) \) is generated by \((0, 0, 0), (0, 0, q)\) where \(z \in eV \cup (1 - eV), x ∈ eV \cup (1 - eV), q ∈ \mathbb{Q}/\mathbb{Z} \) and it is enough to check the lemma for these 5 types of generators. For \((0, 0, q)\) this is clear. Similarly, if \(z ∈ (1 - eV) \) and \(x ∈ (1 - eV) \), then both sides yield \(Δ((z, x, q)) \) as one easily checks. For \(z ∈ eV, \ x ∈ eV, \ q ∈ \mathbb{Q}/\mathbb{Z} \)

\[
H_{e, u_e, v_e}(z, x, q) = (v_e x, -e^{-1} u_e^j z, q + β(z, -ex)).
\]

To calculate the right hand side, we note that according to the decomposition

\[
V = eV ⊕ (1 - eV)
\]

the space \(\mathbb{C}[V] = \mathbb{C}[eV] ⊗ \mathbb{C}[(1 - e)V] \) is a tensor product and

\[
h_{e, u_e, v_e} = (h_{e, u_e, v_e})_{eV} : \mathbb{C}[eV] ⊗ \mathbb{C}[(1 - e)V] \rightarrow \mathbb{C}[V].
\]

Moreover, the permutation matrix \(Δ((0, 0, 0)) : b_v → b_v + x \) for \(v ∈ e \) is a tensor product \(p_x ⊗ \text{id} \) and similarly the diagonal matrix \(Δ((z, 0, 0)) \) for \(z ∈ eV \) is a tensor product \(d_z \otimes \text{id} \). It is therefore enough to calculate the action on elements of \(\mathbb{C}[eV] \). For \(z = e^j z ∈ e^j V, x = e x ∈ eV \) and \(v = e v ∈ eV \), we get

\[
h_{e, u_e, v_e} Δ((e^j z, 0, 0)) h_{e, u_e, v_e}^{-1}(b_v) = \\
= h_{e, u_e, v_e}(eV)|^{-1/2} \sum_{w ∈ eV} \exp(2\pi i(β(-e^{-1} u_e^j e v, w) + β(w, e^j z)) b_w) \\
= |eV|^{-1} \sum_{w' ∈ eV} \sum_{e ∈ eV} \exp(2\pi i(β(-e^{-1} u_e^j e v, w) + β(w, e^j z) + β(w', v_e w)) b_{w'}).
\]

Now \(β(-e^{-1} u_e^j e v, w) + β(w, e^j z) + β(w', v_e w) = β(-e^{-1} u_e^j e v + e^{-1} z + e^{-1} u_e^j e w') \). Hence the sum over all \(w \) is non-zero, only if \(-e^{-1} u_e^j e v + z + e^{-1} u_e^j e w' = 0 \) which implies
that \(w' = v - \epsilon^{-1}u'_e z \). Hence \(h_{e,v_e,v_e} \circ \Delta((e^I z, 0, 0)) \circ h_{e,v_e,v_e}^{-1} b_v = b_{v - \epsilon^{-1}u'_e z} \). A similar calculation yields

\[
\begin{align*}
h_{e,v_e,v_e} \circ \Delta((0, e x, 0)) \circ h_{e,v_e,v_e}^{-1} b_v &= h_{e,v_e,v_e}(\epsilon V)^{-1/2} \sum_{w \in \epsilon V} \exp(2\pi i (\beta(-\epsilon^{-1}v'_e \epsilon v, w)))b_{w + e x} \\
&= h_{e,v_e,v_e}(\epsilon V)^{-1/2} \sum_{w \in \epsilon V} \exp(2\pi i (\beta(-\epsilon^{-1}v'_e \epsilon v, w - e x)))b_w \\
&= h_{e,v_e,v_e} \circ h_{e,v_e,v_e}^{-1}(\exp(2\pi i (\beta(-\epsilon^{-1}v'_e \epsilon v, ex)))b_v) \\
&= \exp(2\pi i (\beta(v, v, x)))b_v.
\end{align*}
\]

\[\Box\]

Proof. (of Theorem 2) That \(p(\ker(\pi)) \subseteq \mathcal{S}(C(\rho)) \) follows from Lemma 4 and 5. Assume now that \(\rho \) is faithful. Then by Lemma 3 the action of \(\mathcal{U}(R, \Phi) \) on \(\mathcal{E}(V) \) is faithful: Let \(s \in \mathcal{S}(C(\rho)) \). Then there is some \(f \in \mathcal{F}(R, \Phi) \) with \(p(f) = s \) since \(p \) is surjective. Moreover the action of \(\pi(f) \in \mathcal{U}(R, \Phi) \) and \(p(f) \in C(\rho) \) on \(\mathcal{E}(V) \) coincide, so \(\pi(f) \) acts trivially on \(\mathcal{E}(V) \) and therefore \(f \in \ker(\pi) \).

\[\Box\]

Remark 6. Let \(\rho \) be faithful. Lemma 4 and 5 show that every element \(a \in C(\rho) \) induces an automorphism \(\alpha \) on \(\mathcal{E}(V) \) that is in \(\mathcal{U}(R, \Phi) \). The latter group acts faithfully on \(\mathcal{E}(V) \) by Lemma 3 hence \(\alpha \in \mathcal{U}(R, \Phi) \) is uniquely determined. This defines a group epimorphism

\[
\nu : C(\rho) \to \mathcal{U}(R, \Phi), \ a \mapsto \alpha.
\]

The kernel of \(\nu \) is precisely the scalar subgroup \(\mathcal{S}(C(\rho)) \). The inverse homomorphism is

\[
\theta : \mathcal{U}(R, \Phi) \to C(\rho)/\mathcal{S}(C(\rho)), \ u \mapsto p(\pi^{-1}(u))
\]

which is well defined by Theorem 2.

For the calculations in Section 5 we need the following lemma.

Lemma 7. Let \(X \in \mathcal{U}(R, \Phi) \) be as in (1). If \(\delta^2 = \delta \) then \(\iota := 1 - \delta \) is a symmetric idempotent of \(R \).

\[\Box\]

Proof. We define \(u_i = -\iota \gamma_i \iota, \ v_i = \iota \beta \iota \) and calculate

\[
\begin{align*}
u_i u_i &= -(1 - \delta)\epsilon^{-1}\gamma_i(1 - \delta) \beta (1 - \delta) \\
&= -(1 - \delta)\epsilon^{-1} \underbrace{\gamma_i \beta}_{=\alpha \delta} (1 - \delta) + (1 - \delta)\epsilon^{-1} \gamma_i \underbrace{(1 - \delta) \beta}_{=\beta \delta}(1 - \delta) \\
&= (1 - \delta)\epsilon^{-1} (1 - \delta) = 1 - \delta = \iota
\end{align*}
\]

and

\[
\begin{align*}
u_i v_i &= -(1 - \delta)\beta (1 - \delta) \epsilon^{-1} \gamma_i (1 - \delta) \\
&= -(1 - \delta)\beta \epsilon^{-1} \gamma_i (1 - \delta) + (1 - \delta)\beta \epsilon^{-1} \gamma_i (1 - \delta) \\
&= (1 - \delta)(-1)(1 - \delta) = 1 - \delta = \iota.
\end{align*}
\]

\[\Box\]
3. \(S(\mathcal{C}(\rho)) \leq S(\mathcal{C}(\rho/C)) \)

The Clifford-Weil group \(\mathcal{C}(\rho/C) \) can be derived from \(\mathcal{C}(\rho) \) by restricting the operation of \(\mathcal{C}(\rho) \) to a submodule of \(\mathbb{C}[V] \).

Lemma 8. The group \(\mathcal{C}(\rho) \) acts on a submodule of \(\mathbb{C}[V] \) isomorphic to \(\mathbb{C}[\mathcal{C}^\perp/C] \). This yields a representation

\[
\text{res} : \mathcal{C}(\rho) \to \text{GL}(\mathbb{C}[\mathcal{C}^\perp/C])
\]

with \(\text{res}(\mathcal{C}(\rho)) \leq \mathcal{C}(\rho/C) \). For the scalar subgroups we get \(\ker(\text{res}) \cap S(\mathcal{C}(\rho)) = \{1\} \) and hence \(S(\mathcal{C}(\rho)) \) is isomorphic to a subgroup of \(S(\mathcal{C}(\rho/C)) \).

Proof. Let \(\text{Rep} \) denote a set of coset representatives of \(\mathcal{C}^\perp/C \). We define a subspace

\[
U := \left\{ \sum_{v \in \text{Rep}} \sum_{c \in C} a_v b_{v+c} | a_v \in \mathbb{C} \right\} \leq \mathbb{C}[V].
\]

This subspace is isomorphic to \(\mathbb{C}[\mathcal{C}^\perp/C] \) via

\[
f : \mathbb{C}[\mathcal{C}^\perp/C] \to U, \sum_{v \in \text{Rep}} \sum_{c \in C} a_v b_{v+c} \mapsto \sum_{v \in \text{Rep}} \sum_{c \in C} a_v b_{v+c}.
\]

So we have

\[
\text{res}(x) = f \circ x \circ f^{-1} \in \text{GL}(U)
\]

for \(x \in \mathcal{C}(\rho) \). Particularly, if \(x = s \cdot \text{id}_{\mathcal{C}[V]} \) then \(\text{res}(x) = s \cdot \text{id}_{\mathbb{C}[\mathcal{C}^\perp/C]} \) and hence the restriction of \(\text{res} \) to the scalar subgroup of \(\mathcal{C}(\rho) \) is injective.

We now will show that

\[
*_{H} \quad f \circ p(\check{H}_{e,\alpha,\nu_e}) \circ f^{-1} = p/C(\check{H}_{e,\alpha,\nu_e})
\]

and

\[
*_{d} \quad f \circ p(\check{d}((r, \phi))) \circ f^{-1} = p/C(\check{d}((r, \phi)))
\]

where \(p : \mathcal{F}(R, \Phi) \to \mathcal{C}(\rho) \) and \(p/C : \mathcal{F}(R, \Phi) \to \mathcal{C}(\rho/C) \) denote the group homomorphisms as defined (2). So we have \(\text{Im}(\text{res}) \leq \mathcal{C}(\rho/C) = \text{Im}(p/C) \) which shows the lemma.

To prove \(*_{H}\) let \(v + C \in \mathcal{C}^\perp/C \) and let \(T \) denote a set of coset representatives of \(\epsilon \mathcal{C}^\perp/\epsilon C \cong \epsilon \mathcal{C}^\perp/C \). Then
\[f^{-1} \circ p(\hat{H}_{e,u,v}) \circ f(b_{v+C}) = f^{-1} \circ p(\hat{H}_{e,u,v})(\sum_{c \in C} b_{v+c}) \]
\[= f^{-1}(\sum_{c \in C} |eV|^{|c|/2} \sum_{w \in eV} \exp(2\pi i \beta(w,v)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{c \in C} \sum_{w \in eC^+} \exp(2\pi i \beta(w,v)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{w \in eC^+} \sum_{c \in C} \exp(2\pi i \beta(w,v)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{w \in eC^+} \sum_{c \in C} \exp(2\pi i \beta(w,v)\langle v+C \rangle)) \]
\[= f^{-1}(\sum_{w \in eC^+} \exp(2\pi i \beta(w,v+C)\langle v+C \rangle)) \]
\[= p/C(\hat{H}_{e,u,v})(b_{v+c}). \]

To show \(\ast_d \) we note that \(\rho \phi(c)(\langle c \rangle) = 0 \) for all \(c \in C \) and for all \(\phi \in \Phi \) and obtain
\[f^{-1} \circ p(\hat{d}(\langle r, \phi \rangle)) \circ f(b_{v+C}) = f^{-1} \circ p(\hat{d}(\langle r, \phi \rangle))(\sum_{c \in C} b_{v+c}) \]
\[= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho \phi(c)(v+c)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho \phi(c)(v+c)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho \phi(c)(v+c)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho \phi(c)(v+c)\langle v+c \rangle)) \]
\[= f^{-1}(\sum_{c \in C} \exp(2\pi i \rho \phi(c)(v+c)\langle v+c \rangle)) \]
\[= p/C(\hat{d}(\langle r, \phi \rangle))(b_{v+c}). \]

\[\Box \]

4. The strategy.

Without loss of generality we now assume that \(\rho \) is faithful, that is,
\[\ker(\rho) = (\operatorname{Ann}_R(V), \ker(\rho \phi)) = (0,0) \]
and let \((I, \Gamma) = \ker(\rho/C) \). We then define \(\text{Res} : \mathcal{U}(R, \Phi) \to \mathcal{U}(R/I, \Phi/\Gamma) \) by
\[\text{Res}(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \begin{pmatrix} \phi_1 & m \\ \phi_2 & \phi \end{pmatrix}) = \begin{pmatrix} \alpha + I & \beta + I \\ \gamma + I & \delta + I \end{pmatrix}, \begin{pmatrix} \phi_1 + \Gamma & m + \psi(I) \\ \phi_2 + \Gamma \end{pmatrix}). \]
By Remark 6 the epimorphism
\[\nu : \mathcal{C}(\rho) \to \mathcal{U}(R, \Phi) \] by \(\nu(m, d) = \delta((r, \phi)) \), \(\nu(h, u, \nu) = H_{e, u, \nu} \)
for \(r \in R^*, \phi \in \Phi \) and symmetric idempotents \(e = u, \nu \in R \) is well defined and its kernel is \(S(\mathcal{C}(\rho)) \). Similarly \(\overline{\nu} : \mathcal{C}(\rho/\mathcal{C}) \to \mathcal{U}(R/I, \Phi/\Gamma) \). Then \(\nu \circ p = \pi \) and \(\pi \circ p/C = \pi/C \), where \(\pi/C : \mathcal{F}(R/I, \Phi/\Gamma) \to \mathcal{U}(R/I, \Phi/\Gamma) \) is the analogous group epimorphism. Again the representation \(\rho/C \) of \((R/I, \Phi/\Gamma) \) is faithful so by Remark 6 the kernel of \(\pi \) is \(S(\mathcal{C}(\rho/C)) \).

We then have the following commutative diagram with exact rows and columns

\[
\begin{array}{ccccccccc}
1 & & 1 & & 1 & & 1 & & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & \ker(\text{res}) & \rightarrow & \ker(\overline{\nu}) & \rightarrow & \mathcal{Y}' & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{S}(\mathcal{C}(\rho)) & \rightarrow & \mathcal{C}(\rho) & \rightarrow & \mathcal{U}(R, \Phi) & \rightarrow & 1 \\
\downarrow & & \downarrow \text{res} & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{S}(\mathcal{C}(\rho/C)) & \rightarrow & \mathcal{C}(\rho/C) & \rightarrow & \mathcal{U}(R/I, \Phi/\Gamma) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{Y} & & 1 & & 1 & & 1 & & 1 \\
\downarrow & & & & & & & & \\
1 & & & & & & & & \\
\end{array}
\]

To see that all sequences are exact, we note that \(\nu|_{\ker(\text{res})} \) is injective, since \(\ker(\text{res}) \cap \mathcal{S}(\mathcal{C}(\rho)) = 1 \). The homomorphisms \(\overline{\nu} \) and res are surjective, since idempotents and units of \(R/I \) lift to idempotents and units of \(R \). Moreover \(\overline{\nu} \circ \text{res} = \overline{\nu} \circ \text{res} \) as one checks on the generators.

The claim of Theorem 1 is that \(\mathcal{Y} \) is trivial. But this is fulfilled if and only if \(\mathcal{Y}' \) is trivial, that is, if \(\nu|_{\ker(\text{res})} \) is an isomorphism since

\[
|\mathcal{Y}| = \frac{|\mathcal{S}(\mathcal{C}(\rho/C))|}{|\mathcal{S}(\mathcal{C}(\rho))|} = \frac{|\mathcal{C}(\rho/C)| \cdot |\mathcal{U}(R, \Phi)|}{|\mathcal{U}(R/I, \Phi/\Gamma)| \cdot |\mathcal{C}(\rho)|} = \frac{|\ker(\overline{\nu})|}{|\ker(\text{res})|} = |\mathcal{Y}'|.
\]

5. The surjectivity of \(\nu|_{\ker(\text{res})} \)

During the proof of Theorem 1 some results on lifting symmetric idempotents are needed, which are stated in the next two lemmata.

Lemma 9. Let \(R \) be an Artinian ring and \(I \) an ideal of \(R \). If \(e \in I + \text{rad} \ R \subseteq R \) such that \(e^2 \equiv e \mod \text{rad} \ R \) then there exists an idempotent \(e' \in I \) such that \(e' \equiv e \mod \text{rad} \ R \).

Proof. We choose \(x_0 \in \text{rad} \ R \) such that \(e_0 := e + x_0 \in I \). Then \(e_0 + \text{rad} \ R \) is an idempotent in \(R/\text{rad} \ R \). Since \(\text{rad} \ R \) is a nilpotent ideal of \(R \) \cite[Theorem 4.9]{2} constructs an idempotent \(e' = f(e_0) \in I \) for some polynomial \(f \in \mathbb{Z}[X] \) with \(f(0) = 0 \) such that \(e' + \text{rad} \ R = e_0 + \text{rad} \ R \). \(\square \)

By \cite[Theorem 4.5]{2} applied to an idempotent \(e \in R \), the right-modules \(eR \) and \(e'R \) are isomorphic, if and only if their quotients modulo \(\text{rad} \ R \) are isomorphic. Hence we find

Lemma 10. Let \(e + \text{rad} \ R \in R/\text{rad} \ R \) be a symmetric idempotent such that
\[
e + \text{rad} \ R = u_e v_e + \text{rad} \ R,
\]
\[
e' + \text{rad} \ R = v_e u_e + \text{rad} \ R,
\]
We therefore find H.

Furthermore, U for some $\tilde{v}_e \in eR$. If $e \in R$ is an idempotent then e is symmetric as well. More precisely, there exist $\tilde{u}_e \in eR'$, $\tilde{v}_e \in eR$ such that

$$e = \tilde{u}_e\tilde{v}_e, \quad e' = \tilde{v}_e\tilde{u}_e$$

and $\tilde{v}_e \equiv v_e \mod R$.

For the rest of this note, let

$$X := \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right), \quad \left(\begin{array}{c} \phi_1 \\ m \phi_2 \end{array} \right) \in \ker(\mathfrak{res})$$

and let $(I, \Gamma) := \ker(\rho/C)$. In particular, $\alpha, \delta \in 1 + I$, $\beta, \gamma \in I$, $\phi_1, \phi_2 \in \Gamma$ and $m \in \psi(I)$. We have to find some $x \in \ker(\text{res})$ such that $\nu(x) = X$.

Lemma 11. We have $d(P(R, \Phi)) \cap \ker(\mathfrak{res}) \subseteq \text{Im}(\nu|_{\ker(\text{res})})$.

Proof. Let $r \in R^*, \phi \in \Phi$ such that $d((r, \phi)) = \nu(m, d_\phi) \in \ker(\mathfrak{res})$. Then $r \in 1 + I$ and $\phi \in \Gamma$. In particular r acts as the identity on C^1/C and $\rho_k/C(\phi) = 0$. This implies that both m_r and $d_\phi \in \ker(\text{res})$. $\quad \square$

Lemma 12. Let δ be a unit. Then there exists $x \in \ker(\text{res})$ such that $\nu(x) = X$.

Proof. Since $\ker(\text{res})$ is a normal subgroup of $\mathcal{C}(\rho)$ it suffices to show that X is contained in the normal subgroup of $U(R, \Phi)$ generated by the elements $d(P(R, \Phi)) \cap \ker(\mathfrak{res})$. We show that there is $\phi \in \Gamma$ such that

$$X = d((\delta, \phi_2))H_{1,1,1}d((1, \phi))H_{1,1,1}^{-1}.$$

We have $d((\delta, \phi_2)) = \left(\begin{array}{cc} \delta^{-J} & \beta \\ 0 & \delta \end{array} \right), \left(\begin{array}{c} 0 \\ \phi_2 \end{array} \right)$ and hence $d((\delta, \phi_2))^{-1} = \left(\begin{array}{cc} \delta^J & -\delta^{-J}\beta^{-1} \\ 0 & \delta^{-1} \end{array} \right), \left(\begin{array}{c} 0 \\ -\phi_2[\delta^{-1}] \end{array} \right)$. We therefore find $d((\delta, \phi_2))^{-1}X = \left(\begin{array}{cc} \delta^J\alpha - \delta^{-J}\beta\delta^{-1}\gamma & 0 \\ \delta^{-1}\gamma & 0 \end{array} \right)$, $\left(\begin{array}{c} -\phi_2[\delta^{-1}] + \phi_1 \tilde{m} \\ 0 \end{array} \right)$ for some $\tilde{m} \in M$. Since the upper right entry in the first matrix of this element of $U(R, \Phi)$ is 0 we obtain $\tilde{m} = 0$ and similarly $\delta^J\alpha - \delta^{-J}\beta\delta^{-1}\gamma = 1$ and we get $d((\delta, \phi_2))^{-1}X = \left(\begin{array}{cc} 1 & 0 \\ \delta^{-1}\gamma & 0 \end{array} \right), \left(\begin{array}{c} -\phi_2[\delta^{-1}] + \phi_1 \\ 0 \end{array} \right)$. Furthermore,

$$H_{1,1,1} = \left(\begin{array}{cc} 0 & 1 \\ -\epsilon^J & 0 \end{array} \right), \left(\begin{array}{c} \psi(-\epsilon) \\ 0 \end{array} \right), \quad H_{1,1,1}^{-1} = \left(\begin{array}{cc} 0 & -\epsilon \\ 1 & 0 \end{array} \right), \left(\begin{array}{c} \psi(-\epsilon) \\ 0 \end{array} \right).$$

Then we have $(d((\delta, \phi_2))^{-1}X)^{H_{1,1,1}} = \left(\begin{array}{cc} 1 & -\epsilon\delta^{-1}\gamma \\ 0 & 1 \end{array} \right), \left(\begin{array}{c} 0 \\ m' \end{array} \right)$, with some $m' \in M$ and $\phi = \{\psi(-\epsilon\delta^{-1}\gamma)\} - \phi_2[\delta^{-1}] + \phi_1 \in \Gamma$, since $-\epsilon\delta^{-1}\gamma \in I$ and $\phi_1, \phi_2 \in \Gamma$. Again $m' = 0$ since the lower left entry in the first matrix is 0. Hence $H_{1,1,1}^{-1}d((\delta, \phi_2))^{-1}XH_{1,1,1} = d((1, \phi)) \in \ker(\mathfrak{res})$.
Lemma 13. The map $\nu|_{\ker(\rho)}$ is surjective, that is, $\text{Im}(\nu|_{\ker(\rho)}) = \ker(\overline{\rho})$.

Proof. We show that there exists a symmetric idempotent $\iota \in I$ such that

$$X = \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix}, \begin{pmatrix} \phi_1' & \mu' \\ \phi_2' \end{pmatrix} \right) \in H_{\iota,u,v},$$

and $\delta' \in R^*$. Since $\iota \in I = \ker(\rho/C)$ the set $\iota(C^\perp/C) = \{0\}$ and hence $h_{\iota,u,v} \in \ker(\rho)$. By Lemma 12 $X' \in \text{Im}(\nu|_{\ker(\rho)})$, so the same holds for X.

Now let us construct ι. The ring $R/\text{rad} R$ is a direct sum of matrix rings over skew fields. Thus there exist $u_1, u_2 \in R^*$ such that $u_1\delta u_2$ is an idempotent modulo $\text{rad} R$. After conjugating with u_2 we obtain an idempotent $\tilde{u}\delta + \text{rad} R \in R/\text{rad} R$ with $\tilde{u} \in R^*$. Since $\tilde{u}\delta + (I + \text{rad} R) \subseteq R/(I + \text{rad} R)$ is an idempotent as well and $\delta \in 1 + I$ is a unit modulo $I + \text{rad} R$, it follows that $\tilde{u} \in 1 + (I + \text{rad} R)$. We can even assume that $\tilde{u} \in 1 + I$. If $\tilde{u} = 1 + i + r$ with $i \in I$ and $r \in \text{rad} R$ then $(1 + i)\delta = (\tilde{u} - r)\delta$ is an idempotent mod $\text{rad} R$. Additionally, from $\tilde{u} \in R^*$ we get $1 + i \in R^*$, so we can assume $\tilde{u} = 1 + i$. Now $d((\tilde{u}, 0)) \in \ker(\overline{\rho})$, thus

$$X \in \ker(\overline{\rho}) \iff d((\tilde{u}, 0))X \in \ker(\overline{\rho})$$

$$\iff \left(\begin{pmatrix} \tilde{u}^{-1} & 0 \\ 0 & \tilde{u}^{-1} \end{pmatrix}, \begin{pmatrix} \tilde{u}^{-1} & 0 \\ 0 & \tilde{u}^{-1} \end{pmatrix} \right) \in \ker(\overline{\rho})$$

Thus we can assume that $\delta + \text{rad} R \subseteq R/\text{rad} R$ is an idempotent.

In the hyperbolic counitary group $U(R/\text{rad} R, \Phi/\Gamma)$ there is

$$\tilde{X} := \begin{pmatrix} \alpha + \text{rad} R & \beta + \text{rad} R \\ \gamma + \text{rad} R & \delta + \text{rad} R \end{pmatrix}, \begin{pmatrix} \phi_1 + \Gamma & \mu + \psi(\text{rad} R) \\ \phi_2 + \Gamma \end{pmatrix}$$

Lemma 7 says that $e := (1 - \delta) + \text{rad} R$ is a symmetric idempotent of $R/\text{rad} R$; more precisely, we may write $e = u_\epsilon v_\epsilon$ with

$$u_\epsilon = -\epsilon e^{-1} \gamma J e J + \text{rad} R,$$

$$v_\epsilon = e J \beta e J + \text{rad} R.$$ By Lemma 9 we obtain a symmetric idempotent

$$\iota := e + x = 1 - \delta + x \in I$$

with $x \in \text{rad} R \cap I$. We calculate the projection on the first component

$$\pi(X H_{\iota,u,v}) = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

$$\begin{pmatrix} \delta' - x' & -v_\epsilon' \\ u_\epsilon' \delta - x \end{pmatrix} = \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix}$$

with $\delta' = -\gamma v_\epsilon' e + \delta - \delta x$. It remains to show that $\delta' \in R^*$. Lemma 10 gives $v_\epsilon \equiv (1 - \delta J)\beta(1 - \delta) \mod \text{rad} R$. Also $\delta x \in \text{rad}(R)$, so it remains to show that

$$\tilde{\delta}' := -\gamma(1 - \delta J)\beta e(1 - \delta) + \delta \in R^*.$$
We observe that $\tilde{\delta} \delta = -\gamma (1 - \delta^J) \beta^J \epsilon (1 - \delta) \delta + \delta^2 = \delta$ and

$$(1 - \delta) \tilde{\delta} = - (1 - \delta) \gamma (1 - \delta^J) \beta^J \epsilon (1 - \delta) = 0,$$

$$(1 - \delta) \beta^J \epsilon (1 - \delta) + (1 - \delta) \gamma \delta^J \beta^J \epsilon (1 - \delta) = 0,$$

$$(1 - \delta) \gamma \beta^J \epsilon + (1 - \delta) \gamma \delta^J \beta^J \epsilon = 1 - \delta.$$

Particularly, $(1 - \delta)(2 - \tilde{\delta}) = 1 - \delta$. Now we see that $\tilde{\delta}$ is a unit since

$\tilde{\delta}(2 - \tilde{\delta}) = \tilde{\delta}(\delta + (1 - \delta))(2 - \tilde{\delta}) = \delta - \delta \tilde{\delta} + \delta = 1 - \delta + \delta = 1$.

□

References